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SUMMARY

A �nite di�erence–pseudo-spectral (FD–PS) algorithm is developed to simulate the viscous �ngering
instability in high mobility-ratio (MR) miscible displacements. This novel algorithm uses the fully
implicit alternating-direction implicit (ADI) method combined with a Hartley based pseudo-spectral
method to solve the Poisson equation involving the streamfunction and the vorticity. In addition, under-
relaxation in the iterative evaluation of the streamfunction is adopted. The new code allowed to model
successfully the viscous �ngering instability for mobility-ratios as high as 1800, and new non-linear
viscous �ngering mechanisms are discovered. A systematic analysis of the e�ects of the MR, the Peclet
number and the aspect ratio on the �nger growth is conducted. It is found that the growth of the
interfacial instability accelerates with increase in the MR and Peclet number. At larger values of these
parameters the increased sti�ness of the corresponding numerical problem caused signi�cant increase in
the computational time as it required �ner grids and smaller time steps to capture the �ne structures of
the viscous �ngers. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A �ow process that involves the displacement of a �uid of a low mobility by another one of
higher mobility leads to the development of an instability at the interface between the two
�uids. This instability, known as viscous �ngering, leads to the development of �nger-shaped
intrusions between the two �uids that a�ect the degree of mixing between the two phases.
As a consequence, �ow processes involving the displacement of one �uid by another and
whose e�ciency is determined by the degree of communication between the two �uids are
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dependent on the severity of this instability. The major parameter that governs this instability
is the mobility-ratio (MR) de�ned as the ratio of the mobility of the displacing �uid over
that of the displaced one.
The objective of the present study is to investigate in a systematic way the nature of

the instability that develops at the interface between two �uids in a high MR displacement
process. Examples of processes that involve high MR displacements include the recovery of
heavy oil and bitumen that has been gaining a lot of attention in the recent years. Given
the large di�erence between the mobilities of the displaced and the displacing �uid, with the
latter being much more mobile than the former, very complex �ngering patterns develop at
the interface between the two �uids. Features of viscous �ngering of �uids can be studied
conveniently in a Hele–Shaw cell since a single phase Hele–Shaw �ow is analogous to two-
dimensional incompressible �ow in homogeneous porous media. Most of the earlier works has
focused either on determining the conditions that lead to the onset of �ngering or the non-
linear evolution of viscous �ngers at relatively small values of MR. However, in heavy oil and
bitumen recovery processes, it is not su�cient to know whether or not instabilities will occur,
since they can hardly be avoided. What is needed is a tool that is capable of predicting the
displacement behaviour once the �ngering has started. This study presents a numerical method
that can simulate viscous �ngering at high-MR miscible displacements involving Newtonian
�uids in a rectilinear Hele–Shaw cell.
E�orts in the �eld of porous media �ow simulation date back at least to the work by

Peaceman et al. [1], who developed a FD algorithm for computing an unstable rectilinear
miscible displacement. The authors employed the governing equations in their primitive for-
mulation based on the velocity and pressure variables. Due to the low order of their numerical
algorithm, a �ngering instability did not develop on its own, but had to be triggered arti�-
cially by imposing small random spatial variation in the permeability. In this work the authors
carried out simulation of viscous �ngering for MRs up to 86 and validated their results by
comparing them with the experiments of Blackwell et al. [2]. The spatial resolution they used
(40× 20 grids) was coarse and therefore unable to capture the initial growth of the �ngering
instability adequately.
Koval [3] and Todd et al. [4] developed empirical one-dimensional models to study viscous

�ngering in Newtonian displacements. Although their models predicted the evolution of the
average concentration pro�le well, they su�ered from major pitfalls. Indeed, such models failed
to explain the mechanisms of the evolution of the instability, let alone predict the unstable
�ow. In a subsequent study, Fayers [5] attempted to remedy these failing by constructing
an approximate one-dimensional model with adjustable parameters that can be physically
interpreted. His adjustable parameters described a �ngering function intended to mimic the
two-dimensional geometry and depth averaged concentration �eld of an array of viscous �ngers
at any given time. The results were in good agreement with the experiments of Blackwell
et al. [2]. Though the adjustable parameters of Fayers [5] now have physical meaning, his
model still precludes a detailed explanation of the mechanisms whereby viscous �ngers evolve.
Christie et al. [6] attempted to improve the FD scheme of Peaceman et al. [1] by using

�ner grids. They conducted simulations for longitudinal Peclet numbers as large as 2000
and MRs from 5 to 86 to model the experiments of Blackwell et al. [2]. All input data
was taken from Blackwell’s experiment and �ngers were triggered by a random perturbation
to the initial concentration. They found reasonable agreement between their calculations and
the experimental prediction of the one-dimensional performance curve. In a subsequent study,
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Christie [7] extended the previous work to coupled miscible and immiscible �ows. This
extension allowed the author to perform calculations when water and solvent �ow simul-
taneously, and thus to calculate the stabilizing e�ects of a water alternate gas (WAG) scheme
directly. In this work the author used 180× 180 mesh and simulated viscous �ngering for
MRs up to 41 in rectilinear as well as quarter �ve spot geometry. In all the above numerical
studies [1, 3–7], explicit schemes were used to solve the time-dependent concentration or sat-
uration equations in a way that stability conditions were satis�ed for the range of MRs used.
These conventional FD methods are usually of second order overall accuracy, but often su�er
from signi�cant levels of numerical dispersion.
Considering the accuracy limitations of the grid based methods, several researchers have re-

cently based their computational investigations on signi�cantly more accurate Spectral methods
[8–17]. Tan et al. [8] studied non-linear interactions of viscous �ngers in miscible displace-
ments in rectilinear Hele–Shaw cell, by carrying out simulations using Fourier transform based
spectral method. Considering the case of isotropic dispersion, the authors were able to capture
non-linear �ngering mechanisms, such as spreading, shielding and tip splitting observed for
the �rst time in their simulations. Zimmerman et al. [9] used Hartley transform based spectral
method to extend the work of Tan et al. [8] in order to include the e�ects of anisotropic
dispersion. They considered dispersion to be velocity dependent and studied the in�uence
of anisotropy on the non-linear evolution of viscous �ngers. A new �ngering mechanism
named coalescence was observed in their simulations for the �rst time. In a subsequent study,
Zimmerman et al. [10] also observed coalescence mechanism in their isotropic simulation of
viscous �ngering at Peclet numbers as high as 4000. In another numerical investigation using
spectral method, Tan et al. [11] studied the e�ects of the permeability heterogeneity. The au-
thors found that the �ngered zone grows linearly in time in a fashion analogous to that found
in homogeneous media [8], indicating a close coupling between viscous �ngering on the one
hand and �ow through preferentially more permeable paths, on the other. Zimmerman et al.
[12] also carried out simulation of miscible displacements in a three-dimensional system and
no new �ngering mechanisms were observed. The authors concluded from the study that two-
dimensional simulations are su�cient to capture the non-linear interactions of viscous �ngers.
More recently, Rogerson et al. [13] studied the e�ect of tangential shearing on non-linear evo-
lution of viscous �ngering, by including a tangential velocity component at the interface of a
miscible �ow displacement. The tangential shearing a�ected the shape and orientation of the
�ngers quite strongly and at the same time had in�uenced the wavelength and growth of the
�ngers. The authors observed new �nger interaction mechanisms, such as diagonal �ngering
and secondary side-�ngering instability, due to the presence of tangential shearing and gravity.
In all these numerical investigations involving Spectral methods, the maximum value of MR
studied was about 20. And in order to solve the time-dependent convection–di�usion equation
for the concentration, either an explicit or a semi-implicit (predictor–corrector) algorithm was
used.
A di�erent line of research has aimed at implementing variants of the Finite Element

method for studying viscous �ngering in miscible displacements. Moissis et al. [18] used a
Finite Element modi�ed method of characteristics for solving the concentration equation and
a mixed Finite Element scheme to solve the pressure equation. In this work a miscible �ood
of a rectangular slab was simulated in two spatial dimensions. The parameters that govern the
�ow were the viscosity ratio, Peclet numbers associated with molecular di�usion, longitudinal
dispersion and transverse dispersion, and the aspect ratio of the slab. The e�ects of local
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permeability variations and overall heterogeneity of the porous medium were also considered.
The highest value of MR reached by Moissis et al. [18] was 750, but their results did not
show interesting �nger structures that were reported in studies at lower MRs using the �nite
di�erence [1, 3–7] as well as spectral methods [8–17]. This casts some doubts on the validity
of their numerical algorithms and the results they reported. In a later study, Coutinho et al. [19]
suggested that the combination of a �nite element modi�ed method of characteristics and a
mixed �nite element method leads to little numerical dispersion, allowing the use of large time
steps and good accuracy in the computation of velocities. In their implementation of a parallel
stabilized �nite element technique, the governing equations were approximated in space by
equal order elements. The resulting semi-discrete equations were approximated in time by a
block-iterative predictor–multicorrector algorithm. Though the authors examined the e�ects of
anisotropy and the non-monotonicity of the viscosity pro�le, they limited their investigation
to low MR, only up to 20. More recently, Coutinho et al. [20] used stabilized �nite element
methods with reduced integration techniques for miscible displacement simulation in quarter
�ve spot geometry. The authors reported that they were able to reach adverse MR as high
as 1000, which to our knowledge, corresponds to the highest MR reported in the literature
dealing with numerical simulation of the viscous �ngering instability. The production curves
at various MRs were compared with the results from a similar study by Castro et al. [21]
and were found to be in good agreement. However, authors of these studies [20, 21] have
not focused on identifying any new viscous �ngering mechanism in such high MR miscible
displacement simulations.
In another recent study, Meiburg et al. [22] implemented a compact FD discretization as

well as a fully implicit alternating-direction implicit (ADI) algorithm to study homogeneous
and heterogeneous miscible porous media �ows. Following the works of Homsy and collabora-
tors [8–12, 14, 15], the study was based on the streamfunction-vorticity formulation of Darcy’s
law and resolved all physically relevant length scales including di�usion. With a formal ac-
curacy of O(�x4;�t2), the numerical approach combined the ease of implementation and
the ability to handle non-trivial geometries with the superior computational accuracy usually
reserved for spectral methods. For numerical convenience the authors used the conservative
form of the concentration equation while implementing the ADI method and the full time
step �t was split into two half steps of size �t=2. During the �rst half step, the convection
and di�usion terms in the x-direction were treated implicitly, while those in y-direction were
dealt with explicitly. During the second half step, the roles were reversed. Though the authors
considered their implementation of the ADI method to be fully implicit, the fact that the ve-
locity �eld was frozen during the entire time step, i.e. all velocities were evaluated at the old
time level, makes the algorithm in reality explicit. The authors were able to validate the code
at an MR=148:4 using results of linear stability analysis, but did not show long time �nger
evolutions at such a large value of MR. Furthermore, only side branching (SB) instability
was reported to as a new non-linear mechanism. To our knowledge, no similar study has been
reported in the literature for MR=148:4 or higher that involves miscible displacement in a
rectilinear geometry.
It can be seen from the above review that most previous studies were limited to low or

moderate MRs (MR¡25). Furthermore, to our best knowledge, the few studies that reached
higher values, either su�ered from numerical dispersion and therefore did not reveal interesting
�nger structures [18], or simply did not show the non-linear evolution of the �ngers at the
high-MR that the authors were able to reach [20–22]. In either case, the maximum MR did
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not exceed 1000, which is below common values encountered in process involving adverse
displacements such as the heavy oil recovery. As we shall see later, high MR displacements
result in sti� problems that cause the code to diverge well before noticeable development of
the physical instability at the interface. Hence, well adapted numerically stable algorithms are
required to study the viscous �ngering instability at higher MRs.
The objective of the present work is to develop a numerical algorithm that is well adapted

for modelling the viscous �ngering instability at high values of MR. From the series of
non-linear simulations conducted using the adopted numerical tools, we will try to identify
new non-linear viscous �ngering mechanisms that dominate the �ow at high-MR miscible
displacements of Newtonian �uids involving isotropic dispersion. We will also investigate the
e�ects of increase in the MR, Peclet number as well as aspect ratio (of the rectangular domain)
on the dynamic evolution of the viscous �ngers. This may allow us to analyse the mechanisms
of instability at the interface involving very high viscosity contrast and the physics behind
their development, which has not yet been examined quite explicitly in the literature.
In Section 2, we present the problem formulation and the governing equations. Section 3

deals with the numerical methods developed to solve the model problem, while Section 4
presents and discusses the non-linear simulation results. In Section 5, some conclusions will
be drawn from this study.

2. PROBLEM FORMULATION

2.1. Physical problem

The pattern of the �ow through porous media is complex and at the microscopic scale,
not amenable to rigorous solution using fundamental laws of mass and momentum transport.
A simpli�ed and useful approach is to consider the �uid motion on a macroscopic scale while
retaining the arti�ce of continuum. The macroscopic �uid properties and �ow characteristics
such as density, velocity and pressure, can still be thought of as point quantities and continu-
ous. The well-known Darcy’s law for �ows through porous media is based on this approach.
The two-dimensional Hele–Shaw �ow uses the same macroscopic approach and has been used
in a great wealth of literature for studying �ow through porous media both experimentally
and numerically.
A Hele–Shaw cell, which consists of two plane parallel plates each of dimensions L (length)

and W (width)—placed close to each other making a thin gap b�W , is an analogue of a
homogeneous porous medium of constant permeability k (see Figure 1). A two-dimensional
miscible displacement in the gap between the two plates is considered, in which one �uid is
displacing another. Both �uids are Newtonian and incompressible, and they are totally misci-
ble. For a general case of a �ow involving a �uid of viscosity �1 and density �1 displacing
another �uid of viscosity �2 and density �2, an instability will develop at the interface between
the two �uids if [23]

[(�2 − �1)U=k + (�2 − �1)g cos �]¿0 (1)

here, g is the gravitational acceleration, � represents the angle between the plane and the
z-axis, and U is the uniform velocity at which an incompressible �uid is injected from the
left hand side. It can be easily seen from Equation (1) that a combination of unfavourable
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Figure 1. Schematic of a rectilinear Hele–Shaw �ow system.

mobilities �=k, and densities � of the two �uids will lead to an unstable �ow displacement.
In the present study, a horizontal rectilinear Hele–Shaw cell is considered (�=�=2) thus the
e�ect of gravity is disregarded. Under this assumption, the instability is only driven by the
viscosity di�erence between the two �uids.
Throughout this study the displacing �uid will be referred to as phase 1, while the displaced

one will be denoted as phase 2. We will use a reference frame where the direction of the
�ow is along the x axis, the y axis is parallel to the initial plane of the interface while the
z-axis is perpendicular to the plates.

2.2. Governing equations

The miscible displacement involving incompressible Newtonian �uids in a Hele–Shaw cell is
described by the continuity equation, the momentum equation in the form of Darcy’s law,
and the convection–dispersion equation for the concentration of the displacing �uid c,

∇:u=0 (2)

∇p=−
(�
k

)
u (3)

@c
@t
+ u · ∇c=∇ · (D∇c) (4)

In the above equations, u=(u; v) is the velocity �eld, p the pressure, D is the dispersion
coe�cient tensor and �=k is the �uid mobility de�ned as the ratio of the viscosity � and
the permeability of the medium k. Here, we will consider the dispersion to be isotropic (i.e.
D=DI), where D is assumed to be a constant. We will also assume that the viscosity is a
general function of the concentration, �=�(c).
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2.3. Boundary and initial conditions

Once the model equations are found, we need to de�ne the appropriate boundary and initial
conditions to solve the model problem. Following previous studies [8–13, 15, 17, 22], we will
implement periodic boundary conditions in the variables of the problem. Thus the physical
boundary conditions are:

u(x=0; y; t)=U; v(x=0; y; t)=0; c(x=0; y; t)= c1

u(x=L; y; t)=U; v(x=L; y; t)=0; c(x=L; y; t)=0 (5)

(u; c)(x; y=0; t)= (u; c)(x; y=W; t) (6)

Equations (5) deal with the streamwise direction, x. At the far left end, the concentration of
phase 1 is c1 = 1, while at the right edge, the concentration of phase 1 is zero since phase
2 is solvent free. The velocity of the �uids at the far-left and far-right ends is equal to the
average injection velocity U .
Equation (6) represents periodicity in the transverse (y) direction in terms of concentration

and velocity, but the x direction periodicity of the concentration poses a problem. One method
to apply periodic conditions for the concentration in the x direction consists of doubling the
domain size through a re�ection at the right boundary x=L [8, 9]. This method of doubling
the domain makes the problem computationally more expensive. In a more e�cient approach,
�rst suggested by Manickam et al. [14] and successfully implemented in the work of Singh
et al. [17], the total concentration at any time in space is split into two components—the
solution of the one-dimensional convection–di�usion equation �c(x; t) and a disturbance con-
centration, c′(x; y; t):

c(x; y; t)= �c(x; t) + c′(x; y; t) (7)

where, �c(x; t)=1−erf
(
x=

√
4t

)
=2 and the expression for the disturbance concentration c′(x; y; t)

will be given when discussing the initial condition.
In this approach, one needs to solve the numerical problem only for the disturbance concen-

tration c′ instead of solving for the total concentration and then the total concentration can be
obtained from Equation (7). The disturbance concentration c′ is zero at both boundaries x=0,
and L, which makes the concentration periodic in the x direction. The simulations will be
stopped well before the �ngers reach the other streamwise boundary. Thus the new periodic
boundary conditions in the x direction can be presented as:

(u; c′)(0; y; t)= (u; c′)(L; y; t) (8)

A constant linear velocity in the x direction and a given two-dimensional distribution of the
solvent concentration are assumed at t= t0, as appropriate initial conditions:

u=U; v=0 ∀(x; y)
at t= t0:

c= c0(x; y; t= t0) ∀(x; y) (9)

Since the total concentration consists of the base state concentration and the disturbance term
c′; either a random perturbation or a single wave of very small magnitude can be introduced
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in the base state concentration at the initial interface. A mathematical description of the initial
condition consists of the solution of the one-dimensional convection–di�usion equation and a
random perturbation:

c0(x; y; t= t0)=
1− erf(x=√4t0)

2
+ � ∗ rand(y) ∗ exp(−x2=�2) (10)

where � is the magnitude of the disturbance, rand is a random number between −1 and 1, �
is a parameter that determines the penetration of the disturbance from the front, erf represents
the error function and t0 is the initial time at which the perturbation concentration is added
to the base state pro�le. The parameters �, � and t0 all are small relative to unity, and the
choice of their values determines the qualitative nature of the initial front. The use of random
numbers as small perturbation allows the inclusion of the whole spectrum of wave numbers.

2.4. Scaling and basic equations

The equations are made dimensionless using di�usive scaling, thus di�usive length D=U and
di�usive time D=U 2 are chosen for scaling the length and time variables, respectively. Since
the permeability k of the medium is constant, it can be easily included in the viscosity itself.
Letting the symbol � represent the ratio �=k, and referring to it henceforth as viscosity, the
viscosities of the two �uids are scaled by the viscosity of the displacing �uid, �1. Finally,
the pressure P is scaled by the characteristic pressure �1D and the concentration by that of
the displacing �uid so that it is equal to one in the displacing �uid and zero in the displaced
one. Moreover, the �ow is examined in a Lagrangian reference frame moving with a constant
velocity U. At this moving reference frame the continuity equation, Darcy’s law and the
convection–dispersion equation take the following dimensionless forms:

∇:u∗ =0 (11)

∇P∗ =−�∗(u∗ + i) (12)

@c∗

@t∗
+ u∗:∇c∗ =∇2c∗ (13)

In the above equations, i is the unit vector in the x-direction and the superscript ∗ is used
to represent the dimensionless quantities. In all that follows the superscript ∗ will be dropped
from the dimensionless parameters for convenience.
In practice, the viscosity–concentration relationship is complicated and changes with the

choice of the �uids. However, we will assume a monotonic relationship between the viscosity
and the concentration [8–13, 16, 17, 22] of the form

�(c)= eR(1−c) or;
1
�
d�
dc
=−R (14)

where R is de�ned as natural logarithm of MR or, R= ln(�2=�1)= ln(MR). This particu-
lar choice for the relationship �(c) is not restrictive, and any other viscosity–concentration
relationship, such as quarter-power blending rule [15, 18, 24], can be easily implemented as
well.
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2.5. Vorticity and streamfunction formulation

For the purpose of solving the model equations numerically, we will follow earlier au-
thors who have adopted a vorticity-streamfunction formulation to implement spectral methods
[8–13, 15–17] as well as in some applications of FD and �nite element methods [18, 22, 24].
The streamfunction and vorticity are related to the velocity �eld as follows:

u=
@ 
@y

; v=−@ 
@x

(15)

!=
@v
@x

− @u
@y

(16)

The streamfunction  and the vorticity ! are related as

∇2 =−! (17)

where ∇2 is the Laplacian operator.
With the above formulation, the continuity equation is automatically satis�ed, and the

convection–dispersion equation (13) can be written as [9, 17]

@ �c
@t
+

@c′

@t
=−

(
@ 
@y

(
@ �c
@x
+

@c′

@x

)
− @ 

@x
@c′

@y

)
+

@2 �c
@x2

+
@2c′

@x2
+

@2c′

@y2
(18)

In the above equation we have used the fact that the concentration is split into two components
as shown in Equation (7). Since the base state concentration satis�es @ �c=@t= @2 �c=@x2, the
convection–dispersion equation for the disturbance concentration can be written as [9, 17]

@c′

@t
=−J +

@2c′

@x2
+

@2c′

@y2
(19)

where

J =
@ 
@y

(
@ �c
@x
+

@c′

@x

)
− @ 

@x
@c′

@y
(20)

By taking the curl of Equation (12) and using the expression of the viscosity (Equation (14)),
the pressure is eliminated and the following vorticity formation equation is obtained [8, 17]:

!=−RN (21)

where

N =
@ 
@x

(
@ �c
@x
+

@c′

@x

)
+

@ 
@y

@c′

@y
+

@c′

@y
(22)

The boundary conditions in terms of perturbation concentration, streamfunction and vorticity
can be written as

Streamwise direction ( ; !; c′)(0; y; t) = ( ; !; c′)(Pe; y; t) (23)

Transverse direction ( ; !; c′)(x; 0; t) = ( ; !; c′)(x; Pe=A; t) (24)

In the above equations, Pe=LU=D is the Peclet number and A=L=W is the cell aspect ratio.
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3. NUMERICAL METHOD

In order to solve the model problem numerically for high MRs, we adopted two di�erent
computational approaches. In the �rst approach, a combination of pseudo-spectral and FD
methods is applied. In this scheme, the equations are transformed into Hartley space using
Hartley transform and then the resulting ordinary di�erential equation for the concentration is
advanced in time. Semi-implicit time-stepping algorithms are used and it was found that at
higher MR, numerical instability causes the code to diverge at very early stages of the �nger
evolution. As it will be discussed later, since it is di�cult to implement fully implicit time-
stepping algorithm with the spectral method, a �nite di�erence based computational algorithm
has been developed which solves the time-dependent convection–di�usion equation by means
of a fully implicit ADI method. This algorithm combines the ease of implementation, the
stability of a fully implicit time-stepping algorithm and the accuracy of the spectral method.
Details of the implementation of this newly developed FD–PS algorithm is presented later in
this section along with the convergence and validation tests.

3.1. Pseudo-spectral (PS) method

We have implemented a PS method based on the Hartley transform [9, 17, 25, 26]. The two-
dimensional discrete Hartley transform (DHT) [25] for an arbitrary function of x and y can
be given as

ĝ(kx; ky)=H [g(x; y)]=
1√
NxNy

Nx∑
i=1

Ny∑
j=1

g(x; y)cas
(
2�kxx
Nx

+
2�kyy
Ny

)
(25)

The above equation is a version of the DHT de�nition where the form of the transform and its
inverse are the same. In this equation cas x=cos x+sin x, kx and ky are the discrete wave num-
bers and Nx and Ny are the number of spectral modes in the x and y directions, respectively. It
is worth mentioning that there can be di�erent de�nitions for DHT. The derivatives of a func-
tion in the Hartley transform space can be easily derived from the transform of the function
by using Hartley transform derivative theorems [26]. Further details of the method and its im-
plementation to study the viscous �ngering instability are found elsewhere [8–12, 17, 25–27].
The major advantage of this method is its high accuracy, often called spectral accuracy, where
the order of accuracy depends only on the smoothness of the solution and the error decays
exponentially for smooth functions. This is in contrast with the FD technique where the ac-
curacy is �xed by the scheme. The Spectral method allows recasting the governing non-linear
partial di�erential equations into a system of ordinary di�erential equations in time for the
variables in the transform space. Then, the ordinary di�erential equations are stepped in time
using explicit or semi-implicit predictor–corrector time-stepping algorithm. In particular, we
have used Adams–Bashforth predictor of the �rst, second and third order with the correspond-
ing Adams–Moulton corrector along with a di�usive–convective operator-splitting algorithm.
To allow accuracy and stability in time-stepping, a correction evaluation sequence is used to
make the method as semi-implicit as desired.
Our attempts to simulate viscous �ngering using PS method with semi-implicit time-stepping

algorithms often showed numerical instability for MR¿24:5. We suspect that this is due to
the fact that the predictor–corrector algorithms are only conditionally stable, which ultimately
caused the code to diverge. However, implementing fully implicit unconditionally stable time-
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stepping algorithms with the PS method is di�cult due to the fact that the Hartley transform
of the product of two functions is not equal to the product of the Hartley transforms of
the functions involved. In the following part we discuss another alternative that combines
the accuracy of the PS methods and the ability to implement fully implicit time-stepping
algorithms.

3.2. Finite di�erence–pseudo-spectral (FD–PS) method

In this part, we used a fully implicit method based on the ADI technique, �rst introduced
by Peaceman et al. [28]. Ferziger [29] showed that the ADI method is consistent, O(�t2) +
O(�x2)+O(�y2), and unconditionally stable. Meiburg et al. [22] used this method to study
miscible displacement in �ve-spot geometry. Although the authors stated that they have imple-
mented a fully implicit ADI scheme, it was found that in order to combine the high accuracy
of the compact FD method [30] with the ADI scheme, they had to consider the velocity �eld
frozen at the old time-point while stepping in time. This in fact makes the algorithm explicit
and therefore conditionally stable.
In the present work, conventional FD method is used to retain the fully implicit nature of the

ADI method. We also used a spectral module to determine the streamfunction from vorticity
distribution by solving the Poisson equation. Thus in the proposed numerical algorithm, we
successfully combined the stability of the ADI scheme and the high accuracy of the spectral
method. As we shall see later, this new algorithm allows to reach high values of the MR.
In what follows, the FD–PS implementation of the ADI scheme will be discussed. We will

also discuss the validation and convergence tests on the newly developed FD–PS algorithm.

3.2.1. Implementation of the FD–PS algorithm. In the implementation of FD–PS algorithm,
the convection–di�usion equation (Equation (19)) and the vorticity formation equation (Equa-
tion (21)) are solved simultaneously, and the Poisson equation (Equation (17)) relating vor-
ticity and streamfunction is used to obtain the streamfunction from the vorticity distribution.
While solving the convection–di�usion equation (Equation (19)) using ADI scheme, both con-
vective and di�usive terms are discretized with second order accuracy when implicit, and with
spectral accuracy (using Hartley transform) when explicit. The right hand side of the vorticity
equation (Equation (21)) is always determined with spectral accuracy. The elliptic Poisson
equation for the determination of the streamfunction from the vorticity distribution is also
solved using the fast Hartley transform. Once the streamfunction is determined, the velocity
components are computed by di�erentiation in the Hartley space. Detailed description of the
implementation of FD–PS ADI scheme will be given next, by explaining the two half steps
(�t=2) that comprise the complete step (�t) in time advancement of the convection–di�usion
equation. The following notations are considered for the time points:

n
jiC ,

*
, jiC 1

,
+n
jiC

n(at t)   *(at t + 1/2  t)  n+1(at t +  t)  ∆ ∆
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For time advancement from t to t+1=2�t, taking implicit step in x direction and explicit step
in y direction, and using second order centred di�erence formula for the spatial derivatives,
the convection–di�usion equation (Equation (19)) results in the following semi-discrete set
of equations:

c∗
i; j − cni; j
�t=2

=−
[
 n
y(i; j)

(
�cx(i; j) +

c∗
i+1; j − c∗

i−1; j
2�x

)

− ∗
x(i; j)c

n
y(i; j)

]
+

c∗
i+1; j − 2c∗

i; j + c∗
i−1; j

�2x
+ cnyy(i; j)

which can be rearranged as

c∗
i−1; j

(
 n
y(i; j)

1
2�x

+
1
�2x

)
+ c∗

i; j

(
− 2
�2x

− 2
�t

)
+ c∗

i+1; j

(
− n

y(i; j)
1
2�x

+
1
�2x

)

=  n
y(i; j) �cx(i; j) −  ∗

x(i; j)c
n
y(i; j) − 2cni; j

�t
− cnyy(i; j) (26)

Here, superscripts n and ∗ denote evaluation at the previous and intermediate time levels, re-
spectively. The explicit terms  n

y(i; j), c
n
y(i; j) and cnyy(i; j) are evaluated using the Hartley transform

derivative theorem [9, 17, 25, 26]. For periodic boundary conditions the above discretization
results in a cyclic tri-diagonal system of equations for c∗

i; j, where the value of  
n
x(i; j) is used for

 ∗
x(i; j) to evaluate the right hand side for the �rst time. The cyclic tri-diagonal system of lin-
ear equations is then solved block-wise, using Sherman–Morrison formula along with a band
matrix solver. Once the value of c∗

i; j is obtained, the vorticity formation equation (Equation
(21)) as well as the vorticity–stream function relationship (Equation (17)) can be used to
update  ∗

i; j and  ∗
x(i; j) values. Using this new value of  

∗
x(i; j) in Equation (26), iteration can be

continued for c∗
i; j until a certain relative convergence criterion is met. It is worth mentioning

that Meiburg et al. [22] used the conservative form of equation (19) in their ADI scheme.
They evaluated the term uc|∗i; j at the intermediate time step, then c∗

i; j was obtained by dividing
uc|∗i; j with un

i; j, which is considered frozen at the previous time step. This actually makes their
algorithm not fully implicit. Whereas in our ADI scheme, both c∗

i; j and u∗
i; j terms are evaluated

at the new time point, which makes the algorithm fully implicit in time.
The vorticity formation equation at the intermediate time level takes the form

!∗
i; j=−R[ ∗

x(i; j)( �cx(i; j) + c∗
x(i; j)) + ( 

n
y(i; j) + 1)c

n
y(i; j)] (27)

Typically the Poisson equation !∗
i; j=− ∗

xx(i; j) −  ∗
yy(i; j) is solved to obtain  ∗

i; j and with this
value,  ∗

x(i; j) is determined. Then, !
∗
i; j is updated using Equation (27) and several iterations are

carried out. Ruith et al. [16] suggested that some under-relaxed iteration in the streamfunction
evaluation step can ensure quicker convergence at larger values of Pe and R. We used similar
under-relaxation in our simulation and we continued iterating until the relative convergence
criterion, for  ∗

i; j, is met. It was observed that the value of the under-relaxation parameter $
has a strong in�uence on the convergence of the numerical code for MR greater than 24.5.
Although there exists in the literature some standard expressions for the optimum value of
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the over-relaxation parameter for some special problems, we had in this case to evaluate the
optimum value of $ through trial and error. We set a limit to the number of iterations equals
to 200, since it was observed that beyond this limit additional iterations do not improve the
advancement of the numerical code.
For the second half step, we obtain the following semi-discrete set of equations from the

convection–di�usion equation:

cn+1i; j − c∗
i; j

�t=2
=−

[
 n+1
y(i; j)( �cx(i; j) + c∗

x(i; j))−  ∗
x(i; j)

cn+1i; j+1 − cn+1i; j−1
2�y

]

+c∗
xx(i; j) +

cn+1i; j+1 − 2cn+1i; j + cn+1i; j−1
�2y

which also can be rearranged as

cn+1i; j−1

(
− ∗

x(i; j)
1
2�y

+
1
�2y

)
+ cn+1i; j

(
− 2
�2y

− 2
�t

)
+ cn+1i; j+1

(
 ∗
x(i; j)

1
2�y

+
1
�2y

)

=  n+1
y(i; j)( �cx(i; j) + c∗

x(i; j))− 2c∗
i; j

�t
− c∗

xx(i; j) (28)

and the following form of vorticity formation equation:

!n+1
i; j = − R[ ∗

x(i; j)( �cx(i; j) + c∗
x(i; j)) + ( 

n+1
y(i; j) + 1)c

n+1
y(i; j)] (29)

A similar approach is taken to evaluate cn+1 and  n+1 values at time step n+1. Thus it can
be easily concluded that the formal accuracy of the algorithm is O(�x2;�t2), although the
explicit derivatives as well as the derivatives of c and  , while performing iteration are
determined with spectral accuracy.

3.2.2. Validation of the FD–PS code. Rigorous validation represents an important step in
establishing the accuracy and convergence properties of a new numerical algorithm. Thus,
before conducting non-linear simulations with the newly developed FD–PS algorithm, we val-
idated our numerical code by conducting some standard tests. In order to validate the complex
coupling between concentration, viscosity and velocity �elds, we carried out simulations for
relatively small values of MR, for which there exist standard results published in the literature
[8]. We also conducted other simulations with the original PS code that was used by Singh
et al. [17], and compared the results in the form of concentration contours at various time
levels of advancement. A systematic comparison of the magnitudes (L2 norm) of the con-
centration �elds obtained by both FD–PS and PS codes was done to quantify the di�erence
between the two results at the same time level. The relative tolerance was found to be of the
order of 10−6. These comparisons showed that the new algorithm is capable of simulating
viscous �ngering with comparable accuracy to the PS code.
We have also tested the convergence of the FD–PS code with mesh re�nement, and con-

ducted simulations using a single wave as initial perturbation with mesh resolutions of 64× 64,
128× 128, 256× 256 and 512× 512. Evaluation of the relative magnitudes of the concentration
�elds at successive increase in the spatial resolution showed that for 128× 128 and 256× 256
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grids, the relative tolerance was of the order of 10−6. On the other hand for 256× 256 and
512× 512 grids, the relative tolerance was found to be of the order of 10−8. The contour
plots for resolutions 256× 256 and 512× 512 also matched perfectly, which thus led to the
conclusion that the code converges with grid re�nement.
The above validation and convergence tests serve not only as a test for the proper cou-

pling of concentration and velocity �elds, but also as a check on the amount of arti�cial
di�usion introduced by the discretization. Such numerical di�usion would result in an e�ec-
tively lower value of Pe, which should a�ect the non-linear growth of the viscous �ngers.
The excellent agreement between the results generated by the FD–PS code and the PS code
shows that the FD–PS discretization e�ectively prevents any problem related to numerical
di�usion.

3.2.3. E�ects of $ on the advancement of the FD–PS code. We carried out several tests
on the e�ects of the under-relaxation parameter ($) on the convergence of the numerical
algorithm at high MR. Unless otherwise mentioned, typical values of the parameters were set
as: Pe=500, A=1, t0 = 0:5, �= �=0:01 and the relative tolerance was set to 10−4. In this
part of the study, we investigated the e�ect of the under-relaxation parameter on the viscous
�ngering instability, while varying the spatial resolution as well as the time step size whenever
necessary. We set the starting point for MR to be 27 since the PS code could successfully
simulate non-linear viscous �ngers for MR up to 24.5. Table I gives a summary of this study
as well as the progress attained.
An analysis of the results given in Table I reveals that the underrelaxation parameter $ has

a strong in�uence on the convergence and stability of the numerical code. The under-relaxed
iteration in the streamfunction evaluation from the vorticity using $=0:8 allowed to reach
an MR=49:4 which is larger than the maximum value obtained with the original PS code.
A larger value, MR=164 was attained by decreasing $ to 0.5, however further decrease in $
to 0.4 did not allow to reach larger values of the MR when using 128× 128 grids. Using the
same resolution and $=0:4, a decrease in the time step size dt from 5× 10−3 to 5× 10−4

did not lead to any improvement either. On the other hand increasing the spatial resolution
to 256× 256 pushed the limit in MR to 544.6. For later simulations, 256× 256 or higher
number of grids was used. By further decreasing the value of $ to 0.3 and dt to 2:5× 10−4,
we were able to simulate successfully the viscous �ngering instability up to MR=1096:6 at
Pe=500. The highest mobility ratio reached with the new code is MR=1808 for a Peclet
number of 250.

Table I. E�ects of $ on simulation advancement for Pe=500.

Number of grid points Step size, dt $ MR

256× 256 5× 10−3 0.8 44.7
128× 128 5× 10−3 0.8 49.4
128× 128 5× 10−3 0.7 73.7
128× 128 5× 10−3 0.6 134.3
128× 128 5× 10−3 0.5 164.0
256× 256 5× 10−3 0.4 544.6
256× 256 2:5× 10−4 0.3 1096.6
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Since it turned out that the under-relaxation parameter ($) has a strong in�uence on the
time advancement of the numerically stable FD–PS code for simulating viscous �ngering at
high MR, we revisited the PS code and implemented the under-relaxation in streamfunction
evaluation step there. It was found that $ has similar in�uence on the advancement of the
PS code at higher MR.

4. RESULTS

In this section, we will present the results of our numerical studies on high mobility-ratio
miscible displacements. It needs to be mentioned that Compaq AlphaStation DS10 600 MHz
workstations were used for all the simulations presented here. We will �rst identify and discuss
new viscous �ngering mechanisms that develop at high MR, and that as far as the authors’
knowledge, are reported here for the �rst time. We will also discuss the e�ects of varying
the MR, the Peclet number and the aspect ratio on the non-linear evolution of viscous �ngers
for random perturbation initial condition.
For all the simulations discussed in this part we set the parameters as follows: time step size

dt=Pe× 10−5, the spatial resolution 512× 512 grids and relative tolerance for the conver-
gence test tol = 10−4. The value of under-relaxation parameter $ varied with the mobility-ratio
as discussed in the previous section (see Table I). The dimensionless time t0 at which the
perturbation is added to the interface is set to 0.5. In order to explain non-linear interactions
of the viscous �ngers, concentration contours between 0.1 and 0.8 are presented, with typical
increment of 0.1. It is worth mentioning that, for aspect ratio of 2 or more, two periods in
the y-direction is shown to capture the complete evolution of the �ngers patterns.

4.1. Newly observed mechanisms

In this section new �nger evolution mechanisms that are reported for the �rst time in simu-
lations of miscible displacements of Newtonian �uids involving isotropic dispersion, will be
discussed. Attempts are taken to use the terminology that describes best the whole non-linear
mechanisms for all newly reported mechanisms.
In order to identify the new mechanisms that become dominant at large values of MR, the

concentration contours shown in Figures 2–5 will be closely followed. Figure 2 shows a case

t = 200 t = 250 t = 350 

SC 
TLD 

DC 

Figure 2. Concentration contours for MR=148:41, Pe=1000 and A=1.
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t = 255 t = 300 t = 525 

STS 

SB 

GC 

SB 

Figure 3. Concentration contours for MR=148:41, Pe=1500 and A=2.

t = 297.5    t = 350 

ASB ASB 

Figure 4. Concentration contours for MR=148:41, Pe=1750 and A=2.

     t = 130 t = 320 

DB 

SK

Figure 5. Concentration contours for MR=403:43, Pe=1000, and A=1.

of MR=148:41, A=1 and for Pe=1000; Figures 3 and 4 show two cases for MR=148:41,
A=2 and for Pe=1500 and 1750, respectively, whereas Figure 5 represents a simulation
for MR=403:43, A=1 and Pe=1000. It is worth mentioning that the simulations for MR
values up to 403.43 covered all the newly observed viscous �ngering mechanisms and no new
mechanisms could be seen at higher MR. For brevity, the time sequences are not presented
at the same time intervals, and only the frames that reveal new mechanisms are shown.
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Stretched coalescence (SC): This very interesting coalescing mechanism is often observed in
the shielded �ngers at high mobility-ratios. As it can be seen in Figure 2 [frame, t=200], the
front of the circled �nger stretches in the ‘upward’ direction and starts coalescing with the
upper �nger, whereas the lower front part of the coalescing �nger does not follow the main
�ow direction and coalesces separately by stretching its way to the �nger next to it. We have
named this mechanism SC.
Trailing lobe detachment (TLD): Due to non-linear interaction between evolving �ngers,
sometimes a long trailing lobe of more viscous �uid forms which eventually detach from the
interacting �ngers (frame [t=250] of Figure 2). This blob of the more viscous �uid then gets
di�used in the less viscous displacing �uid with time. This mechanism was �rst observed in
non-linear simulation of viscous �ngering by Rogerson et al. [13] using tangential velocity
component and was termed as TLD. It is reported for the �rst time in simulations involving
miscible displacement of Newtonian �uids, without any tangential shearing.
Double coalescence (DC): In DC, two shielded �ngers adjacent to a shielding �nger bend into
its base, and slowly merge into it. Frames [t=350] of Figure 2, represent an excellent example
of double coalescence. This interesting mechanism was �rst observed by Singh et al. [17] for
miscible displacements involving non-Newtonian shear-thinning �uids, and was named DC.
However, this is the �rst time such a mechanism is reported for a purely Newtonian miscible
displacement.
Side branching (SB): The peculiarity of this mechanism is that the tips of the SB �ngers
are not directed in the streamwise direction but are directed slightly ‘upward’ or ‘downward’.
This movement of the tips generates shear in two di�erent directions, making the concentration
gradients steeper on the lower side of the upward directed �nger and on the upper side of the
downward directed �nger. The circled �nger in frame [t=255] of Figure 3 initially evolves
through a shielding mechanism and grows in an inclined fashion while competing with its
neighbours. Later at t=300, instabilities grow on the lower side of this inclined �nger. As the
instabilities on the side of the �nger grow, in usual case the �ngerlets continue to grow and
split, resulting in SB instability. The SB instability was also reported by Singh et al. [17] in
their simulations involving non-Newtonian shear-thinning �uids. To the author’s knowledge,
this is the �rst time it is observed for a Newtonian miscible displacement.
Gradual coalescence (GC): In a conventional coalescence mechanism, the tip of the coalescing
�nger bends and merges into the neighbouring shielding �nger. Here we identi�ed a new
coalescing mechanism in which the slightly inclined shielding �nger gradually merges into its
closest neighbour through the �ngerlets developed on the inner side of the �nger. We named
this interesting mechanism GC (see frame t=300 of Figure 3). To our knowledge, GC is
reported for the �rst time in the present study.
Single-sided tip-splitting (STS): In a typical TS mechanism, the streamwise directed shielding
�nger spreads at the tip and splits into two even �ngerlets [9]. At the initial stage of the current
mechanism, the tip of the �nger splits unevenly. The wider part of the �nger then spreads
and goes through another tip-splitting mechanism, and the process continues. We named this
mechanism as STS as the tip of the spreading �nger splits in such a way that the thinner
�ngerlets always evolve in the same side of the parent �nger. Frame [t=525] of Figure 3
shows an excellent example of STS. This interesting mechanism is also observed for the �rst
time in the present study.
Alternating side-branching (ASB): This is the most intriguing viscous �ngering mechanism
observed in our simulation. If we closely follow the evolution of the circled �nger in Figure 4,
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it can be easily seen that the branches are developing alternately on the upper and lower side
of the stream-wise directed �nger, and the major �ow of the low viscosity �uid follows a
spiral path. We named this mechanism ASB which, to our knowledge has not been reported
in any previous study.
Skewering (SK): The shielding �nger shown in frame [t=130] of Figure 5 develops in a
very unusual fashion which gives rise to a new �ngering mechanism. The �nger spreads
�rst at the tip and in further development, the tip does not go through any kind of tip-
splitting instability—a small bump grows at the middle of the tip instead. This interesting
mechanism was referred to as SK in literature. SK was reported by Kawaguchi et al. [31]
in the immiscible displacement at very high injection rate and was also seen in miscible
displacement experiments of non-Newtonian �uids [32]. However, this is the �rst time a
numerical simulation of a Newtonian �ow displacement reveals this mechanism.
Dense branching (DB): The small bump described previously (frame [t=130] of Figure 5)
grows with time and evolves via TS and other non-linear mechanisms. In further development
of the �nger into the more viscous �uid ([t=320] of Figure 5), the numerous side branches
evolve so close to each other that the growth mechanism can be referred as DB. Li [32]
observed DB mechanism in his miscible displacement experiments involving shear-thinning
�uid. However, DB is reported for the �rst time for displacements of Newtonian �uids in our
simulation.

4.2. E�ects of MR at high MR miscible displacements

In this section, the e�ect of increasing MR is studied while �xing all other parameters includ-
ing the Peclet number. We adjusted the value of the under-relaxation parameter $ following
the previous discussion. We conducted three simulations for three large values of the MR,
MR=148:41, 403.43 and 1096.63. The dimensionless �ow rate Pe was set to 750 while the
aspect ratio was set to 1. Table II summarizes the time advancement for all these simulations
as well as the corresponding computational times. In the table, tadvanced represents the dimen-
sionless time required by the viscous �ngers to reach the stream-wise boundary of the cell.
A quick review of Table II shows that the computational time increased quite signi�cantly
with increase in MR. This apparent slow down of the code may be due to the increased
instability in the physical process with increase in MR, which also made the correspond-
ing numerical problem a sti� one at higher levels of time. However, at larger values of
MR the increased sti�ness of the corresponding numerical problem could be resolved by
using �ner grids and smaller time steps to capture �ne structures of the viscous
�ngers.
Few contour plots are shown in Figures 6(a) and (b) to illustrate the e�ect of increase

in the mobility ratio on the �nger structures. It is clear that the complexity of the viscous
�ngering mechanisms increases quite signi�cantly with the increase in MR. Besides spreading,

Table II. E�ect of mobility ratio using random noise perturbation (Pe=750, A=1).

Computational time
MR $ tadvanced (hh:mm:ss)

148.41 0.5 322:5+ 178:41:02
403.43 0.4 262:5+ 274:12:02
1096.63 0.3 217:5+ 292:11:19
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          t = 150               t = 300 
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(b)

Figure 6. Concentration contours for Pe=750, A=1 and (a) MR = 148:41, (b) MR = 1096:63.

shielding, fading and coalescence, the major viscous �ngering mechanisms observed are: SC,
DC and TLD at MR=148:41; and SK, TS, STS and ASB at MR=1096:63.
From the type of viscous �ngering structures observed at higher MR, the increased in�uence

of viscous cross �ow with increase in MR can be easily traced.

4.3. E�ects of Peclet number (Pe) at high MR

From the de�nition of Peclet number, a higher value of Pe either means lower level of
di�usion (D) for �xed �ow rate (U) of the displacing �uid, or larger �ow rate at �xed
level of di�usion. However, for a given combination of �uids the value of Pe is directly
proportional to the �ow rate. Small �ow rates provide di�usion with enough time to smear
out the concentration �eld, whereas for larger �ow rates steeper concentration gradients can
be maintained. In this part of the study, the e�ects of Peclet number (Pe) at high MR
on the development of the viscous �ngering instability in miscible displacements is studied
systematically. The value of Pe is varied as 750, 1000 and 1250 while �xing A=1 and
MR=148:41. The time advancements of the simulations are summarized in Table III and the
appropriate contour plots are shown in Figures 6(a), 2 and 7.
It should be stressed at this point that in di�usive scaling the length of the computational

domain is Lx∗=Pe. Thus, from Table III it can be easily seen that the increase in Pe ac-
celerates the evolution of the interfacial instability, such that the �ngered front reaches the
boundary faster. The non-linear mechanisms observed at Pe=750 are already discussed in
previous section and shown in Figure 6(a). It can be seen from Figure 2 that at Pe=1000, the
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Table III. E�ects of Peclet number for MR=148:41 and A=1.

Computational time
Pe $ tadvanced (hh:mm:ss)

750 0.5 322:5+ 178:41:02
1000 0.5 400+ 216:12:45
1250 0.5 400+ 191:05:50

       t = 187.5 t = 275 t = 312.5 

TS
ASB

DB 

Figure 7. Concentration contours for MR=148:41, A=1 and Pe=1250.

prevailing viscous �ngering mechanisms are SC, TLD and DC. On the other hand, the contour
plots shown in Figure 7 for Pe=1250 present some very interesting �ngering patterns. At
this high value of Peclet number, TS instability occurs at a very early stage (Figure 7; frame
[t=187:5]). The �nger that has gone through TS mechanism later shows ASB instability in
each of its �ngerlets. Finally, DB instability is seen to occur at the tip of the �ngerlets.
From the parametric study shown above, it can be concluded that an increase in Pe results

in more complex viscous �ngering patterns and stronger competitions among the evolving
�ngers. Thus at high Peclet numbers, the non-linear interactions of the competing �ngers
cause a number of new and interesting �ngering mechanisms to �ourish in high mobility ratio
miscible displacements. What we also observed by varying spatial and temporal resolution is
that �ner resolution and smaller time steps are required to capture the �ne �nger structures
at larger Peclet numbers.

4.4. E�ects of aspect ratio (A) at high mobility-ratios

The aspect ratio (A=L=W ) of the computational domain is another important parameter that
in�uences the number of �ngers as well as their growth mechanisms. Recalling that the di-
mensionless streamwise length is Lx∗=Pe and the dimensionless transverse length is Ly∗=A.
Pe, one sees that by varying the aspect ratio of the domain, the transverse length available for
non-linear interactions can be altered. In order to investigate the e�ects of A on the non-linear
evolution of viscous �ngers, we carried out three simulations for aspect ratios of 2, 4 and
8, with a relatively large value of the MR (MR=148:41) and a Peclet number Pe=1000.
Illustrative contour plots for this investigation are shown in Figures 8(a) and (b).
A close examination of the contour plots shown in Figure 8 reveals that A=4 gener-

ates intricate viscous �ngering structures, and that the �nger structures become less complex
with increasing aspect ratio. In particular for A=4, the TS instability that occurred earlier
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Figure 8. Concentration contours for MR=148:41, Pe=1000 and (a) A=4, (b) 8.

Table IV. E�ects of aspect ratio for MR=148:41 and Pe=1000.

Computational time
A $ tadvanced (hh:mm:ss)

2.00 0.5 390+ 53:16:02
4.00 0.5 450+ 57:11:19
8.00 0.5 630+ 67:01:02

(Figure 8(a); frame [t=150]) initiates ASB �ngers. In later stages, as a result of DC of the
neighbouring �ngers to the alternating side branching �nger, two of the alternate branches
grow in the streamwise direction leading to a pair of �ngers. At a larger aspect ratio of
A=8, the lack of su�cient length scale in the transverse direction is seen to induce mutual
interaction of the spreading and shielding �ngers which eventually results in a single dominant
�nger (shown in Figure 8(b)).
The decrease in the complexity of the �nger structures with increasing aspect ratio can be

explained by the reduction of the transverse length scale required for non-linear interaction of
the viscous �ngers. When the transverse length scale is reduced, the closely spaced �ngers go
through interplay of coalescence, fading and tip-splitting as well as other non-linear viscous
�ngering mechanisms. This eventually reduces the number of �ngers to long time single
dominant �nger. On the other hand, a smaller aspect ratio provides larger transverse length
scale for the non-linear interaction. At larger transverse length scale, increased non-linear
interactions of viscous �ngers often result in more complex structures.
A summary of the simulation advancement for A=2, 4 and 8 is shown in Table IV. It

is clear that the dimensionless time (tadvanced) required by the viscous �ngers to reach the
stream-wise boundary increases with increasing aspect ratio. This may be explained using the
previous observations. Indeed, the interface consisting of a single �nger (A=8) is found to be
less unstable than that with many intricate �ngers at aspect ratio A=4, and therefore it takes
longer time for the �ngered front to reach the stream-wise boundary at higher aspect ratio.

5. CONCLUSIONS

The objective of the present study is to develop a numerical algorithm that allows to model
miscible �ow displacement of Newtonian �uids at adverse MR. To this end, the �ow has
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been analysed using a rectilinear Hele–Shaw cell geometry, and a novel numerically stable
algorithm has been developed.
The new numerical scheme combines both the FD and the spectral methods. The FD

method allows implementing a fully implicit alternating-direction implicit (ADI) time stepping
algorithm, while the PS method is used to solve the Poisson equation involving streamfunction
and vorticity. In addition, underrelaxation is used while iterating to evaluate the streamfunction
from vorticity-formation equation. It is found that the underrelaxation has a very strong e�ect
on the convergence of the numerical algorithm at high MR. The newly developed FD–PS
code allows simulating the non-linear viscous �ngering with high accuracy for a MR as high
as 1808, a value much larger than what has been reported so far in the literature.
Non-linear interactions of the viscous �ngers are investigated at moderate–high MR. Finger

interaction mechanisms reported by previous researchers in the case of Newtonian displace-
ments at low–moderate MR (MR620:1), are all observed in our simulations. At high MR
(MR¿148:41) new interesting viscous �ngering mechanisms are observed. These mechanisms
include SC, GC, STS, ASB, DB, SK, DC, TLD and SB. In particular, we think that the
mechanisms of SB, ASB, STS and DB observed at high MR and su�ciently large Peclet
numbers, are reminiscent of fractal structures, and may represent the viscous �ngering struc-
tures observed in asymptotically high MR displacements. We have also analysed the e�ects
of di�erent parameters on the �nger structures. As expected, an increase in the MR always
causes increased instability at the miscible interface which results in new and interesting �n-
gering mechanisms. Besides, an increase in the Peclet number also causes increased instability.
Finally, it is found that smaller aspect ratios result in more complex �nger structures.
Finally, we would like to comment that the new viscous �ngering mechanisms reported

here are observed using both PS and FD–PS algorithms and some of these mechanisms
have experimental support in the literature. However, new independent computations or new
laboratory experiments should be conducted to further validate the �ndings of this study.
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